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SUMMARY

A detailed numerical implementation within the FEM is presented for a physically motivated three-
dimensional constitutive model describing the passive and active mechanical behaviors of the skeletal
muscle. The derivations for the Cauchy stress tensor and the consistent material tangent are provided. For
nearly incompressible skeletal muscle tissue, the strain energy function may be represented either by a
coupling or a decoupling of the distortional and volumetric material response. In the present paper, both
functionally different formulations are introduced allowing for a direct comparison between the coupled
and decoupled isochoric-volumetric approach. The numerical validation of both implementations revealed
significant limitations for the decoupled approach. For an extensive characterization of the model response
to different muscle contraction modes, a benchmark model is introduced. Finally, the proposed implemen-
tation is shown to provide a reliable tool for the analysis of complex and highly nonlinear problems through
the example of the human mastication system by studying bite force and three-dimensional muscle shape
changes during mastication. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The skeletal muscle fulfills several different functions in the human body providing support to the
skeletal system, enabling body movement, or any other voluntary active tissue response such as in
facial expressions, speech, and mastication. Skeletal muscle in humans differs from other muscle
tissue types such as smooth or cardiac muscle through its ability to be activated voluntarily by the
somatic nervous system. Similarly to most soft biological tissues, a muscle may undergo large defor-
mations and is characterized by a highly nonlinear deformation response. Its hierarchical structure,
consisting of fascicles of myocytes or muscle cells on the macrolevel reaching down to the basic
functional unit of muscle, that is, the sarcomere, spans across several length scales [1, 2].

Unlike most other soft tissues, the ability to actively contract allows the muscle to produce tensile
force upon neural stimulation. Extensive mechanical characterization of muscle properties began
with Hill’s phenomenological three element model [3]. This formulation captures the fundamental
relationship between contraction velocity and tensile force in the fully tetanized muscle observed
in pioneering experiments on individual muscle fibers. However, the underlying contraction

*Correspondence to: M. Jabareen, Faculty of Civil and Environmental Engineering, Technion – Israel Institute of
Technology, Haifa, Israel.

†E-mail: cvjmah@tx.technion.ac.il

Copyright © 2014 John Wiley & Sons, Ltd.



546 J. WEICKENMEIER ET AL.

mechanism was not understood until Huxley proposed the micromechanically based cross-bridge
theory [4]. The Hill model provides a simple formulation of the active properties of the muscle
on the tissue level and has been used and extended in many different model formulations [1, 5–7].
Most constitutive laws proposed in literature consider a one-dimensional (1D) formulation in order
to describe the interaction between muscle, tendons, and joints within the musculoskeletal system
[8–12]. However, appropriate modeling of the interaction between muscle and its surrounding tis-
sue requires a 3D representation allowing for a physical prediction of transversal and volumetric
material response. Several models describing the contractile properties on a continuum level have
been proposed in recent years of which most make use of a phenomenological description of the
underlying tissue behavior [13–21]. Moreover, constitutive models were proposed describing the
electromechanical coupling in the skeletal muscle [22–24] and skeletal muscle fatigue [24–26]. Rep-
resentation of the electromechanical coupling was applied to model active behavior of cardiac mus-
cles [27–29]. Other work aims at describing phenomena such as stretch-induced muscle growth [30]
and muscle damage [31].

In general, a 3D continuum approach provides the basis for an effective description of
nonlinear, anisotropic material behavior including the possibility to represent different muscle fiber
distributions and pennation angles. Alongside the advances in mathematical modeling of the muscle
tissue, new experimental methods allow for more comprehensive validation procedures of the
proposed constitutive formulations. These recent developments include improved experimental
setups to characterize the passive properties of the muscle [32], visualization of muscle deformation
behavior during contraction [33, 34], and the application of the elastography method to determine
stiffness properties of the muscle [35, 36].

The development of mathematical muscle models provided substantial understanding of active
tissue behavior in the human body. Examples are the simulation of muscle driven locomotion where
rigid body systems together with 1D muscle formulations [9, 37, 38] are implemented in the finite
element (FE) environment to improve our understanding of muscle response and its interaction with
surrounding tissues [39–41]. Other examples are given by detailed FE simulations of the tongue
[42], the human upper airway [43], or the forces during mastication [20].

Finite element simulations require the implementation of active or passive constitutive models.
Hence, on the basis of constitutive equations governing the material response at a continuum level,
the consistent linearization of the strain energy function, the stress tensor, and the associated material
tangent must be provided for numerical calculation, which is missing in all previously mentioned
publications. The muscle model considered here is based on the work of Böl and Reese (2008)
[44], Ehret (2011) [45], and Ehret et al. (2011) [15]. Most constitutive material laws for muscle
proposed so far make use of an additive split of muscle tissue stress into a passive and an active part.
This approach is mainly due to experimental practice where the muscle responses are compared in
the resting and activated states. However, this modeling approach ignores experimental evidence
that the sarcomere system is not a purely active muscle component [15, 46, 47]. Ehret et al. (2011)
[15] avoided this explicit additive split of muscle stress and presented a phenomenologically based
material model that provides significant control of several different contractile characteristics of the
skeletal muscle. This model assumes the muscle tissue as incompressible. Model implementation
in a FE program using a material subroutine does not allow to enforce volume preservation. For
this reason, a modified formulation is introduced here without incompressibility condition. We first
present the implementation of the new set of equations in the FE environment. Next, the consistent
linearization of the strain energy function, the Cauchy stress tensor � , and the associated spatial
form of the material tangent C are derived. The implementation of the strain energy function was
carried out for two functionally different formulations of the muscle model allowing for a direct
comparison between the so-called coupled and decoupled approach. The decoupled approach refers
to the additive split of the strain energy function into a volumetric and a purely isochoric part as pro-
posed by Flory (1961) [48]. This widely used approach is compared to a formulation avoiding this
decomposition. It is shown that the volumetric-isochoric split leads to negative eigenvalues of the
spatial tangent modulus C and to an unphysical volume behavior for the activated muscle state. This
unphysical volumetric response has already been observed for different material models of passive,
fiber-reinforced soft tissues by Helfenstein et al. (2010) [49].
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Finally, our FE implementation is applied in a realistic simulation of bite force resulting from the
contraction of the masseter muscle. This example is used to demonstrate the predictive capabilities
of the model implementation with respect to shape changes of geometrically complex muscles and
the development of bite force during mastication.

2. FINITE ELEMENT IMPLEMENTATION

On the basis of a muscle model presented in Ehret et al. (2011) [15, 45], a constitutive model
formulation is proposed for the passive and active behavior of skeletal muscles. The formulation
makes use of the generalized invariants representation including a term that controls the muscle
activation. While the constitutive model proposed by Ehret et al. (2011) considers muscle as a fully
incompressible tissue, there is no experimental evidence found in literature that would indicate such
behavior. Moreover, the numerical implementation of a fully incompressible material within the FE
environment entails significant challenges in providing adequate approximation schemes and can-
not be realized using a material subroutine. Hence, muscle tissue is considered here as a nearly
incompressible material, thus, allowing for an adequate physical approximation of the mechanical
response. For comparison reasons, two different functional forms for the constitutive formulation
of the muscle tissue with and without the additive volumetric-isochoric split of the strain energy
function are introduced. To the best of our knowledge, the derivations of the stress tensor and the
consistent material tangent for both approaches are presented here for the first time.

2.1. Active skeletal muscle model

The first functional form of the strain energy function presented here is given as a function of the
right Cauchy Green tensor CD FTF as
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where �, ˛, ˇ, and � are material parameters. QI , QJ , and IIIC are three invariants of C expressed in
terms of the structural tensor QL given by
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Material anisotropy is governed by the structural tensor M D m˝m, where m is the unit vector
parallel to the preferred muscle fiber direction in the reference configuration. The identity tensor
of second order I serves to describe the passive isotropic properties of muscles. The weighing
parameters w0 and wp govern the ratio between muscle matrix material (w0) and muscle
fibers (wp), with w0 C wp D 1. In this formulation, an activation parameter wa is intro-
duced, which affects the generalized invariant QI . The magnitude of wa is correlated to the
current level of the muscle activation and is governed by a physically based activation function
described in the succeeding texts.

The second functional form that makes use of the volumetric-isochoric split of the strain energy
function is given by
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where �, ˛, ˇ, and � are material parameters and
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In this formulation, NC represents the unimodular right Cauchy–Green tensor that renders a pure
measure of distortion and is defined by

NCD J�2=3C. (5)

The choice of the volumetric part NWvol in (3) is based on the strong polyconvexity condition and
sufficient growth for large strains in order to penalize considerable volume changes. Substantial
work on this topic has been carried out by Neff et al. (2003) [50, 51].

Both formulations presented in Equations (1–5) represent new constitutive models describing the
active tissue response. It can be shown that these two formulations coincide only for the case of
ideal incompressibility. In this special case, these strain energy functions correspond to the ones
presented by Ehret et al. (2011) [15].

In the following, the strain energy function W (1) will be referred to as the coupled formulation
and the strain energy function NW (3) as the decoupled formulation. Relevant components of the
active elements in both model formulations are presented here on the basis of the corresponding
equations in [15,44]. This set of equations constitutes the basis for the derivation of the stress tensor
and the consistent material tangent. As mentioned in the previous texts, the activation level of the
muscle is governed by the parameter wa determined by [15]
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where W0.�?/ denotes the solution for the principal branch of the Lambert-W function, and �? is
given by [15, 52]
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Here, the squared fiber stretch �m, the passive part of the first generalized invariant QIp , and its first
derivative with respect to fiber stretch �m, QI

0

p , are defined by [15]
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The nominal stress Pact due to the activation of the muscle is expressed in terms of an activation
function as [15, 44]

Pact D f�f� Na

nMUX
iD1

�iF
i
t , (11)

where Na
nMUP
iD1

�iF
i
t , f� , and f� are functions (of time t ) accounting for the activation, sarcomere

length, and velocity dependencies, respectively. The total active muscle stress is the result of a super-
position of the twitch force of each of the nMU motor unit types present in the muscle fiber, where
�i indicates their corresponding fraction. The scalar factor Na is a measure of the total number of
activated muscle units per reference cross-sectional area. The twitch force of a single motor unit of
type i is determined by [15, 44]

F it DGi .Ti=Ii /

nIMPX
jD1

gij .t � tij /, (12)
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with nIMP equal to the number of impulses sent to the recruited muscle fibers. The aforementioned
formulation for F it is based on the sum over the mechanical response of each single motor unit
twitch gij multiplied by a dimensionless gain function Gi . The latter function inherits the exper-
imentally observed nonlinear relation between single muscle fiber force and normalized stimulus
rate Ti=Ii through a sigmoid relationship Si .Ti=Ii / D 1 � exp

�
�2.Ti=Ii /

3
�
. Twitch contraction

time Ti and interstimulus interval Ii are experimentally determinable muscle properties. The gain
function and the single twitch force response are of the form [15, 44]

Gi .Ti=Ii /D
Si .Ti=Ii /

Ti=Ii
D
1� exp

�
�2.Ti=Ii /

3
�

Ti=Ii
, (13)

gij .t � tij /D
.t � tij / NFi

Ti
exp

�
1�

.t � tij /

Ti



, (14)

where NFi is the twitch force of motor unit type i determined experimentally.
The expressions f� and f� in (11) are physically motivated and account for the microscopic state

of the muscle. From experiments by Gordon et al. (1966) [53] and others, the dependence of the
overlap between actin and myosin filaments on the muscle force produced by a single twitch is well
understood. In the formulation described here, f� is given by a Weibull distribution that depends on
two characteristic constants �min and �opt, where �min denotes the lower bound for the fiber stretch at
which myofilaments still overlap, and �opt refers to the fiber stretch at which maximum twitch force
is reached. The asymmetric shape of the Weibull distribution properly describes the experimentally
observed muscle response [15, 44]. Accordingly,
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The hyperbolic character of the relation between the force due to concentric muscle contraction
and the fiber stretch velocity P�m observed in experiments by Hill (1938) [3] is included in f� . The
formulation considered here distinguishes between the muscle shortening and lengthening phase as
follows [15, 44]:
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where ke and kc are constants referring to the concentric and eccentric contraction and P�min denotes
the minimum stretch rate.

2.2. Implementation in the finite element package ABAQUS

In order to simulate the mechanical response of individual muscles, the model was implemented into
the commercial FE package ABAQUS (Dassault Systèmes, Providence, RI, USA) [54]. It allows
users to program a user subroutine called UMAT, where general material constitutive equations can
be implemented. In the UMAT subroutine, the deformation gradient F represents an input, while the
Cauchy stress tensor � and the spatial tangent stiffness CJ [55, 56] are output variables. The latter
one is consistent with the objective Jauman–Zaremba stress rate. In particular, the Cauchy stress
tensor and the spatial tangent stiffness are given by
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where SIJ and CIJKL are components of the second Piola–Kirchhoff stress tensor and material
tangent modulus tensor, respectively.

The derivations of the individual terms for the second Piola–Kirchhoff stress and material tan-
gent modulus tensor for the functional form W (1) are presented in the following, while the
corresponding set of equations for the second formulation NW (3) is derived in Appendix B.

The second Piola–Kirchhoff stress tensor based on (1) reads as
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Taking the dependence of wa on the right Cauchy Green tensor C into account, the corresponding
material tangent can be given by
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The derivatives of C�1 and C�1 QLC�1 with respect to C are given in Appendix A. It should be noted
that the second term on the right-hand side of (20) causes the material tangent modulus C to be
unsymmetric.

The derivative of the Lambert-W0 function with respect to the muscle stretch appearing in (21) is
given by
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The additional active muscle stress Pact resulting from impulses sent to the muscle is a function of
�m. Thus, we can write
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where the derivatives of the functions ff� , f�g with respect to �m are given by
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Finally, using the backward Euler differentiation, the time derivative of the muscle stretch P�m and
its derivative with respect to the muscle stretch can be approximated by
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3. NUMERICAL VERIFICATION

The descriptive capabilities of the proposed muscle models and the reliability of the two different
constitutive formulations are evaluated in this section by direct comparison of their performance.
A uniaxial tension test is used to investigate the basic mechanical response of the passive and the
active components of the muscle models. Finally, a benchmark example is introduced in order to
study mesh dependent effects, convergence behavior, and the model response for different modes of
muscle contraction.

3.1. Passive and active uniaxial behaviors

The two different implementations were tested in a numerical example of a unit cube meshed by
one element and subjected to uniaxial tension. A single fiber family is considered with its preferred
direction aligned in the uniaxial loading direction. Boundary conditions were chosen such that only
axial stretches are applied, and lateral surfaces of the cube are traction free. The material parameters
used within this analysis are taken from Ehret et al. (2011) [15, 45] and are given in Table I for the
passive components and in Table II for the active components ‡.

Table I. Material parameters of the muscle passive material response.

� (kPa) ˛ .�/ ˇ .�/ w0 .�/ �=� (kPa)

0.1599 19.69 1.190 0.7388 1000.0

Table II. Microstructural parameters of the activation functions governing wa.

Motor unit type Fiber type Index i .�/ �i .%/ NFi .N / Ti .s/

Slow I 1 5 0.025 0.020
Fast resistant IIa 2 29 0.044 0.011
Fast fatigue IIb 3 66 0.768 0.011

The passive material parameters from Table I were determined by least squares optimization to fit
the muscle model to experimental data from [57]. These experiments quantified the purely passive
and fully activated muscle response of rat tibialis anterior muscle. For this muscle microstructural
properties are available in literature.

‡Note, that in comparison to [15], the parameters NFi (twitch force of motor unit type i) have been multiplied by a fac-
tor 10 in order to reproduce the data presented by [57]. Additional material parameters: Ii D 4.0ms (i D 1,2,3),
NaD 52.07cm�2, �min D 0.682,�opt D 1.192, P�m D 0.0.
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In uniaxial tension simulations of the active muscle presented here, the muscle is fully activated
to contract to its minimal length first, before the external stretch is applied through a prescribed
displacement. The simulations using the decoupled formulation show a nonphysical volume growth
for rather small axial stretches, as it can be seen in Figure 1. This observation has been reported by
Helfenstein et al. (2010) [49] for the very same numerical example but for other fiber-reinforced
material models implemented according to the decoupled formulation. In their work, Helfenstein
et al. showed that the additive split of the strain energy function might lead to undesired material
responses even though the strain energy function is polyconvex. It was concluded that for deforma-
tion modes at which the fiber contribution to the total strain energy is sufficiently large, effective
fiber stretch is reduced through increasing spherical deformations.

The results of the present study also demonstrate that the decoupled formulation for fiber-
reinforced material models lacks to preserve volume also for active materials such as muscle
(Figure 1). At the same time, it can be shown that the coupled formulation on the basis of the
strain energy function W (1) adequately constrains volume changes for stretches far beyond the
physiological range of soft biological tissues.

Figure 1. Element volume over fiber stretch for uniaxial stress using the fully activated muscle.

The nonphysical volumetric response was further analyzed by an eigenvalue analysis of the two
different spatial tangent modulus tensors derived from W and NW . For each time increment in the
aforementioned simulation, the six eigenstates and corresponding eigenvalues of the spatial tangents
represented in the 6D space according to the Voigt notation were calculated.

According to Mehrabadi and Cowin (1990) [58] and Annin and Ostrosablin (2008) [59], these six
eigenstates t.i/ possess information on principal directions of the material, and the associated eigen-
values �i provide a measure of corresponding stiffness. For the two implementations compared
here, t.1/ points along the space diagonal of the cube, t.2/ points predominantly in the direction
of the fiber, and t.3/ lies in the plane perpendicular to the fibers. Eigenstates t.4/, t.5/, and t.6/ are
associated with the shearing modes and are of less interest for the case of uniaxial tension presented
here (see, e.g., [58, 59]).

Figure 2 shows the evolution of the first three eigenvalues of the spatial tangent modulus tensor
for: (i) the purely passive muscle and (ii) the active muscle using the decoupled formulation. In the
passive case, the �1-curve and �2-curve cross. This means that the principal direction of stiffest
material response changes from being along the space diagonal of the cube to the vector mainly
in the direction of the fiber. This happens in the stretch range where uncontrolled volume growth
begins as seen in Figure 1. To the authors knowledge, this behavior has not been presented before
and provides significant information on the unphysical material response due to the decoupling of
the strain energy function into a distortional and dilatational part.
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Figure 2. Evolution of the first three eigenvalues of the spatial tangent modulus tensor based on the
decoupled formulation.

For the activated muscle, the similar crossing of eigenvalue curves is observed again as shown
in Figure 2(b). Additionally, we also observed that for fiber stretches �m < 0.682, there is no
contribution of the active components to the overall mechanical response of the muscle. For fiber
stretches �m > 0.682, however, the material parameter wa becomes nonzero, which results in a dis-
continuous evolution of �2 and �3. Only the eigenvalue associated with the element space diagonal
(�1) behaves continuously and is almost constant. However, the behavior of �2 is most important
because it becomes negative for fiber stretches �m between 1.1 and 1.18, while all other eigenvalues
remain positive. Negative eigenvalues of the spatial tangent modulus tensor indicate nonpositive
definite tangent stiffness that is unphysical for the case presented here.

Much to the contrary, the coupled formulation does not exhibit either of the problems revealed
for the decoupled formulation as shown in Figure 3(a) and (b) for the passive and active muscle
behaviors, respectively. For the passive muscle stretching, the eigenvalues evolve continuously, are
always positive, and do not cross.

Figure 3. Evolution of the first three eigenvalues of the spatial tangent modulus tensor based on the coupled
formulation.
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The simulation of active uniaxial tension using the coupled formulation based on the strain energy
functionW (1) including the active material response renders only positive eigenvalues of the spatial
tangent modulus tensor.

On the basis of the performance analysis of both functional forms, it can be concluded that
the split of the strain energy into a volumetric and distortional part (3) leads to unphysical
phenomena. Especially, the inadequately constrained volume and the negative eigenvalues present
significant limitations to the applicability of this approach for the implementation of fiber-reinforced
anisotropic passive and active tissue models. Hence, further verification of the muscle model
implementation is carried out for the coupled functional form W (1).

3.2. Benchmark simulations

There are different modes of muscle tissue contraction depending on the activation and the kinematic
boundary conditions. Generally, a distinction is made between: (i) concentric or eccentric contrac-
tion; (ii) isometric contraction; (iii) isotonic contraction; and (iv) isokinetic contraction. In the first
case, the force produced upon activation is either greater or lower than the load applied to the muscle,
and thus, the muscle either shortens (concentric contraction) or lengthens (eccentric contraction).
Under the isometric contraction, the muscle remains at constant length, so that the force produced
by the muscle balances the applied load. For the isotonic case, the contraction force of the muscle is
constant and independent of changes in the muscle length. Finally, the isokinetic contraction refers
to the case of constant contraction velocity.

In order to understand the model response to different contraction modes, a benchmark example
is considered. The geometry is defined such that all the aforementioned modes can be simulated and
combined. The setup is shown in Figure 4 where the muscle is represented by a rectangular block
with a width of 100 mm, a length of 500 mm, and a thickness of 20 mm. The muscle fibers are
aligned in the longitudinal direction of the block. Both ends of the muscle are tied to rigid bodies
which can only move in the longitudinal direction of the block and cannot penetrate each other.

Figure 4. Geometry of benchmark model (n=2).

In the simulation, the rectangular block contracts upon activation until both rigid bodies are in
contact (free contraction). Then, the contraction force increases until it reaches the maximal value
corresponding to the current state of the muscle (isomeric contraction). The material parameters
used for this simulation are given in Tables I and II. The muscle model was meshed by dividing the
longitudinal, transverse, and height directions into 10n, 2n, and n segments, respectively. There-
fore, the parameter n controls the level of mesh refinement. For this simulation, selective-reduced
integration 8-noded hexahedral elements were used.

Figure 5 shows the evolution of the contraction force predicted in the simulation. The tetanic
force is reached approximately at time t=0.08 s and remains constant for the rest of the activation
time. There is no loss in tetanic force because muscle fatigue is not considered in the muscle model
presented here. The gap between the two rigid bodies closes within the first 1 ms and remains closed
for the remainder of the simulation time. In order to investigate the homogeneity of force in the mus-
cle, three different levels of mesh refinement were investigated. As expected for this simple uniaxial
tension case, the maximum muscle force differed by less than 1.0% when comparing meshes with
n D 1, 2, 5. Although the inhomogeneity of the force field at the boundaries where the muscle is
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Figure 5. Tetanic muscle force in the benchmark example.

attached to the rigid bodies showed a dependency on mesh refinement, it had a minor impact on the
overall response of the muscle.

The convergence behavior of the implemented material model is expressed in terms of residual
force in Table III. A fixed step size of 
t D 1.0 � 10�06 s was defined in order to evaluate the equi-
librium equations. The apparent quadratic convergence confirms the correct implementation of the
material tangent for the proposed muscle model.

Table III. Convergence rate of the first four loading steps in the benchmark
simulation.

Increment #1 Increment #2 Increment #3 Increment #4

Iteration #1 7.380 � 10�02 5.811 � 10�03 6.508 � 10�03 7.185 � 10�03

Iteration #2 1.352 � 10�03 8.512 � 10�06 1.051 � 10�05 1.261 � 10�05

Iteration #3 4.756 � 10�07 2.172 � 10�11 3.111 � 10�11 4.338 � 10�11

The muscle response due to a variation in individual twitch forces NFi and interstimulus rate Ii is
analyzed on the example of isometric contraction as shown in Figure 6. For this purpose, both rigid
bodies are fixed, and the total muscle length of 500 mm is thus prescribed. Apart from the values of

Figure 6. Parameter study on contractile properties of the masseter muscle. Influence of (a) muscle fiber
twitch and (b) interstimulus rate on the active muscle force in the fiber direction.
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Fi and Ii , material parameters are the same as in the previous simulations. The impact of the twitch
force variation is investigated by varying the values of Fi (reported in Section 3.1) by˙10%. Thus,
a weaker and stronger muscle response is simulated.

It can be seen from Figure 6 that the magnitude of muscle force differs from previous simula-
tions due to the different fiber stretches at which the muscle contracts isometrically (present case
�m D 1.0, previous simulations �m D 0.8 due to isotonic contraction until rigid bodies are in con-
tact). It can be observed that the force time history is similar to the previous example. A variation
of twitch forces by ˙ 10% results in a corresponding variation on the tetanic forces by ˙ 11.0%.
Furthermore, the maximum force level drops significantly for longer interstimulus times. Increasing
the interstimulus rate by a factor 6 causes a drop in the maximum force by 80.0%.

4. SIMULATION OF MASSETER MUSCLE RESPONSE

The human mastication system consists of the masseter, the temporalis, the medial pterygoid, and
the lateral pterygoid muscle. All of those muscles, except for the temporalis, originate from the
skull and insert into the mandible. Moreover, the temporomandibular joint builds a connection point
between mandible and temporal bone. Due to the shape of the joint, movements in all planes are pos-
sible, thus allowing to open and close the mouth, to move sidewise, and to grind during mastication
and speech. The lateral pterygoid muscle allows to open the jaw, while the other three muscle mainly
act in closing and sidewise movements of the jaw. The mastication muscle group is innervated by
the mandibular branch of the trigeminal nerve.

Barbarino et al. (2008, 2009) [60,61] presented an anatomically detailed FE model of the face of
a 27 year old male. In their work, most facial soft tissue structures including muscles of the mastica-
tory system were semiautomatically reconstructed from magnetic resonance images. The mechan-
ical interactions between different tissues were represented, and the nonlinear force-deformation
characteristic of soft biological materials was governed by three dimensional constitutive equations
that are valid for finite elasto-viscoplastic deformations (Rubin and Bodner [62, 63]).

Figure 7. Anatomical reconstruction of the masseter muscle, skull, and mandible (left). The displacement
magnitude of the masseter muscle at the end of the activation time (right).

The geometric representation presented here is based on the segmentation proposed in [61].
Other examples aiming at the reconstruction of such tissue structures are presented in literature
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[20, 25, 42, 64, 65]. The masticatory system is reduced to the masseter muscle only because during
mastication, the masseter muscle is dominantly responsible for the generation of bite force to be
simulated in this example. The physiological resting position of the mandible (the relaxed state
of the masseter muscle) is characterized by a mouth opening of 4.0 mm at the incisors [66]. A
homogeneous muscle fiber alignment in the longitudinal muscle direction is assumed. The muscle
insertion points are modeled by boundary conditions applied to the superior end of the muscle where
it inserts into the zygomatic arch and the inferior end. Here, the muscle is connected to the inferior,
posterior region of the mandible. The jaw rotates around the transverse axis, while the sagittal and
vertical axes are locked. Bone structures are modeled as rigid bodies, and the masseter mesh con-
sists of selective-reduced integration 8-node elements. A representation of the masticatory system
considered in this example is shown in Figure 7.

When activating the masseter muscle, the jaw rotates around the temporomandibular joint
causing the mouth to close. Once the teeth are in contact, the total muscle length is fixed, while
the muscle continues to increase the contraction force until it reaches the maximum value. The
bite strength of the human masticatory system has been investigated in several different ways. For
example, Van Eijden (1991) [67] provided a setup allowing to determine bite force values for var-
ious bite positions and force directions. By least squares optimization, we determined material
parameters on the basis of the maximal bite force of 500 N according to the range of bite forces
recorded by [67].

The microstructural parameters entering the active part of the model are derived from physical
properties of the human masseter. The experimental works by Eriksson and Thornell (1983) [68],
Fuglevand et al. (1999) [69], and Yemm (1977) [70] allow to determine the distribution of muscle
fiber type I ( 62.0%) and IIb (38.0%), as well as their respective twitch forces and contraction times.
According to [68], the human masseter muscle has a negligible amount of fast twitch muscle fiber
type IIa.

In Tables IV and V, the material parameters used in the numerical example are summarized, while
NaD 7.384 cm�2 in (11).

Table IV. Material parameters of the passive model determined
by the least squares optimization.

� .kPa/ ˛ .�/ ˇ .�/ w0 .�/

0.165 19.96 2.02 0.736

Table V. Microstructural parameters obtained from experiments on masseter
muscle fibers by Eriksson and Thornell (1983) [68], Fuglevand et al. (1999) [69],

and Yemm (1977) [70].

Motor unit type Fiber type Index i .�/ �i .%/ NFi (N) Ti (s)

Slow I 1 62.5 0.0829 0.0656
Fast fatigue IIb 2 37.5 0.0536 0.0459

The numerical model proposed here provides not only a way to predict muscle forces but also
allows to realistically estimate the 3D geometric changes in the muscle shape on the basis of the
current state of contraction. As a consequence of the nearly incompressible behavior, the contrac-
tion will result in a shortening and thickening of the masseter muscle. Figure 7 shows the magnitude
of displacement at the end of the contraction period. The activation will cause a rotation of the jaw
until the teeth are closed. Note that the teeth opening of 4.0 mm of the incisors corresponds to a
vertical displacement of about 3.31 mm in the region of the molar teeth.

The predicted bite force-time curve is plotted in Figure 8. The bite force continuously increases
up to a peak force level of 500 N. The time to reach tetanic force is around 0.4 s which is in line
with [20]. Moreover, the shape of the bite force curve over time closely follows data found in
literature [71].
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Figure 8. Masseter muscle force response during an activation period of 600 ms.

5. CONCLUSION

In the present paper, two FE implementations of a continuum constitutive model with and without
the volumetric-isochoric split of the strain energy function of skeletal muscle tissue are compared.
The decoupled approach is often favored in cases where volumetric and distortional material
response can be expressed in terms of two individual parts in the strain energy function [72]. The
passive part and the physically based active part were selected such that polyconvexity and coer-
civity are guaranteed. The derivation of the two corresponding Cauchy stress tensors 	 and the
consistent spatial tangent stiffness CJ are provided and implemented in the user-defined ABAQUS
subroutine UMAT. A direct comparison of the two functionally different formulations revealed
substantial numerical limitations of the decoupled approach. Significant volume growth takes place
within a physical range of the muscle deformation and results in an unphysical representation of
muscle tissue behavior. On the other hand, the coupled formulation is shown to properly predict the
nearly incompressible nature of the tissue and its active response. On the basis of the eigenvalue
analysis of the spatial tangent modulus tensor, it is concluded that the decoupled approach is unsuit-
able for anisotropic fiber-reinforced materials, both passive and active. This observation provides
strong motivation to formulate the strain energy function in terms of the full right Cauchy Green
tensor. In a benchmark example, the coupled model demonstrated quadratic convergence and good
predictive capabilities in different loading configurations.

Finally, an anatomically based representation of the human masseter muscle was used to inves-
tigate the predictive capabilities of the model with respect to shape changes and muscle force
production during the biting phase of mastication. This example shows the possibility to simulate
geometrically complex structures and highly nonlinear problems including active material response.

Experimental verification of the 3D prediction of muscle shape changes during contraction is
planned as a next step. Future work will also consider an anatomically based representation of
muscle fiber orientation.

APPENDIX A:

Derivation for the coupled formulation

The components of the derivatives of C�1 and C�1 QLC�1 with respect to C as in (20) are given by
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APPENDIX B:

Derivation for the decoupled formulation

The equations presented here follow general concepts of continuum mechanics (as presented in,
e.g., [72]). However, due to the active elements entailed in the constitutive equations presented in
Section 2.1, the standard forms of the decoupled approach include additional terms. Hence, for the
sake of completeness, we present the full set of equations in the following.

The second Piola–Kirchoff stress tensor S resulting from the strain energy function NW (3) reads
as

SD 2
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where the derivatives of NC and J with respect to C are given by
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Here, the fourth-order projection tensor P and the fourth-order unit tensor II have been introduced
as follows:
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Thus, (B.1) can be rewritten by
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Again, considering the dependence of wa on the right Cauchy Green tensor C, the material tangent
corresponding to the strain energy function NW (3) is
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where
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